4.7 Article

Oil-Particle Separation in a Falling Sphere Configuration: Effect of Oil Film Thickness

Journal

ENERGY & FUELS
Volume 30, Issue 10, Pages 8776-8786

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.6b00995

Keywords

-

Funding

  1. Institute for Oil Sands Innovation (IOSI) at the University of Alberta

Ask authors/readers for more resources

High-speed videos of oil-coated solid spheres falling through an aqueous solution were analyzed to determine the amount of oil separated and the velocity of the coated sphere during free fall. The oil-coated sphere configuration is relevant to understanding the recovery of oil from oil sands; hence, bitumen was used as the oil phase. A new form of a capillary number based on a low-Reynolds number solution is introduced to characterize the separation process. The proposed particle-based capillary number takes into account the effect of the oil film thickness and the viscosity ratio. In this study, the separation of oil from an oil-coated sphere is examined as a function of the oil film thickness, while keeping the viscosity ratio constant at 0.08. From the experimental results, it was observed that there is a critical oil film thickness beyond which oil separation from a particle is observed. Higher oil removal efficiencies are obtained at higher oil film thicknesses. The velocity of an oil-coated sphere is higher than the velocity of an oil-free sphere due to the lubrication effect of the oil layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available