4.7 Article

Quantitative Characterization of Tumor Proximity to Stem Cell Niches: Implications on Recurrence and Survival in GBM Patients

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijrobp.2021.02.020

Keywords

-

Ask authors/readers for more resources

Using a novel inverse distance map, the study found improved prediction of glioblastoma multiforme (GBM) recurrence and survival. Proximity scores (PS) based on the location of stem cell niches (SCNs) relative to tumors, with PSm-SCN being the strongest predictor for survival.
Purpose: Emerging evidence has linked glioblastoma multiforme (GBM) recurrence and survival to stem cell niches (SCNs). However, the traditional tumor-ventricle distance is insufficiently powered for an accurate prediction. We aimed to use a novel inverse distance map for improved prediction. Methods and Materials: Two T1-magnetic resonance imaging data sets were included for a total of 237 preoperative scans for prognostic stratification and 55 follow-up scans for recurrent pattern identification. SCN, including the subventricular zone (SVZ) and subgranular zone (SGZ), were manually defined on a standard template. A proximity map was generated using the summed inverse distances to all SCN voxels. The mean and maximum proximity scores (PSm-SCN and PSmax-SCN) were calculated for each primary/recurrent tumor, deformably transformed into the template. The prognostic capacity of proximity score (PS)-derived metrics was assessed using Cox regression and log-rank tests. To evaluate the impact of SCNs on recurrence patterns, we performed group comparisons of PS-derived metrics between the primary and recurrent tumors. For comparison, the same analyses were conducted on PS derived from SVZ alone and traditional edge/center-to-ventricle metrics. Results: Among all SCN-derived features, PSm-SCN was the strongest survival predictor (P < .0001). PSmax-SCN was the best in risk stratification, using either evenly sorted (P = .0001) or k-means clustering methods (P = .0045). PS metrics based on SVZ only also correlated with overall survival and risk stratification, but to a lesser degree of significance. In contrast, edge/center-to-ventricle metrics showed weak to no prediction capacities in either task. Moreover, PSm-SCN; PSm-SVZ, and center-to-ventricle metrics revealed a significantly closer SCN distribution of recurrence than primary tumors. Conclusions: We introduced a novel inverse distance-based metric to comprehensively capture the anatomic relationship between GBM tumors and SCN zones. The derived metrics outperformed traditional edge or center distance-based measurements in overall survival prediction, risk stratification, and recurrent pattern differentiation. Our results reveal the potential role of SGZ in recurrence aside from SVZ. (C) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available