4.7 Article

ATF3-Induced Mammary Tumors Exhibit Molecular Features of Human Basal-Like Breast Cancer

Journal

Publisher

MDPI
DOI: 10.3390/ijms22052353

Keywords

ATF3; mouse model; breast cancer; basal-like; RNA-Seq; miRNA; Mir145; Mir143

Funding

  1. NIH [R01 CA16620, P30 CA016672, P30 ES007784]
  2. Cancer Prevention and Research Institute of Texas [CPRIT RP170002]

Ask authors/readers for more resources

The study identified molecular features of BK5.ATF3-derived mammary tumors through RNA-Seq and miRNA microarrays, showing similarities with human BLBC. The downregulation of miRNAs led to the upregulation of target genes, suggesting a potential direct modulation by ATF3. This mouse model could be a powerful tool for investigating the molecular mechanisms of BLBC and identifying therapeutic targets.
Basal-like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem-cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human therapeutic development. ATF3 is a potent oncogene that is aberrantly expressed in most human breast cancers. In the BK5.ATF3 mouse model, overexpression of ATF3 in the basal epithelial cells of the mammary gland produces tumors that are characterized by activation of the Wnt/beta-catenin signaling pathway. Here, we used RNA-Seq and microRNA (miRNA) microarrays to better define the molecular features of BK5.ATF3-derived mammary tumors. These analyses showed that these tumors share many characteristics of human BLBC including reduced expression of Rb1, Esr1, and Pgr and increased expression of Erbb2, Egfr, and the genes encoding keratins 5, 6, and 17. An analysis of miRNA expression revealed reduced levels of Mir145 and Mir143, leading to the upregulation of their target genes including both the pluripotency factors Klf4 and Sox2 as well as the cancer stem-cell-related gene Kras. Finally, we show through knock-down experiments that ATF3 may directly modulate MIR145/143 expression. Taken together, our results indicate that the ATF3 mouse mammary tumor model could provide a powerful model to define the molecular mechanisms leading to BLBC, identify the factors that contribute to its aggressiveness, and, ultimately, discover specific genes and gene networks for therapeutic targeting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available