4.7 Article

Development and evaluation of a point-of-use UV appliance for fresh produce decontamination

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijfoodmicro.2020.109024

Keywords

UV; Decontamination appliance; Tomato; Spinach; Washing; Salmonella

Ask authors/readers for more resources

The study investigated the effectiveness of an appliance utilizing UV and agitated water to decontaminate fresh produce. Factors such as UV intensity, treatment time, and agitation speed were found to have varying effects on the inactivation of Salmonella on different types of produce. The UV appliance shows potential as an inexpensive and effective tool for improving fresh produce safety at home, cafeterias, restaurants, and hospitals.
In-house treatment strategy for fresh produce decontamination has not been emphasized as much as industrial washing. The most common treatment for fresh produce decontamination and cleaning at home and other point-of-use places such as cafeteria is rinsing and/or soaking in a sink. In this study, an appliance utilizing UV and agitated water to decontaminate fresh produce was developed and its effectiveness was investigated in an aim to identify optimum processing parameters. Grape tomato and spinach representing two different surface smoothness were dip-inoculated in a four-strain Salmonella cocktail to reach a final population of 5-8 log CFU/g and air-dried. The produce samples were then washed in 1 gallon tap water under varying conditions, water agitation speed (0-190 RPM), sample size (50-400 g), UV intensity (0-30 mW/cm(2)) and treatment time (2, 5 and 10 min). In general, increasing the agitation speed and UV intensity enhanced Salmonella inactivation for both grape tomato and spinach. Sample size significantly affected the UV inactivation of Salmonella on grape tomato, but not on spinach. The effect of extending treatment time from 2 to 10 min was insignificant for almost all the UV treatments and the controls. The effect of UV intensity and treatment time on inactivation of Salmonella on spot-inoculated grape tomato and spinach was also determined. The most severe treatment used in this study, 30 mW/cm(2) UV for 10 min, resulted in >4 log reductions of Salmonella dip- or spot-inoculated on grape tomato (200 g sample size and 190 RPM agitation speed) and 3.5 log reductions of Salmonella dip- or spot-inoculated on spinach (100 g sample size and 110 RPM agitation speed). We foresee that the UV appliance developed and evaluated in this study could be further fine-tuned and optimized to eventually construct a point-of-use UV appliance that can be used at home, cafeteria, restaurants, and hospitals for fresh produce decontamination and cleaning. The UV appliance could be an inexpensive and effective tool to improve fresh produce safety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available