4.7 Article

Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI plus GPI) engine

Journal

ENERGY
Volume 111, Issue -, Pages 92-103

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2016.05.109

Keywords

Ethanol direct injection; Gasoline port injection; Dual-fuelled; Numerical modelling; Injection timing

Funding

  1. China Scholarship Council (CSC)

Ask authors/readers for more resources

Ethanol direct injection plus gasoline port injection (EDI+GPI) is a new technology to utilise ethanol fuel more effectively and efficiently in spark-ignition engines by taking the advantages of ethanol fuel and direct injection, such as the cooling effect and anti-knock ability. A full cycle numerical modelling including both port and direct injection sprays was performed to understand the mechanisms behind the experimental results of the EDI+GPI engine. The turbulence-chemistry interaction of the two-fraction mixture partially premixed combustion was solved by a five-dimensional presumed Probability Density Function table. Effects of direct injection timing on fuel evaporation, mixing, wall-wetting, combustion and emission processes were investigated. The results showed that when the direct injection timing was retarded, the mixture around the spark plug became leaner and the distribution of equivalence ratio became more uneven. Moreover, late direct injection resulted, in severe fuel impingement and caused local over-cooling effect and over-rich mixture. Consequently, the combustion speed and temperature were decreased by retarded direct injection timing, leading to reduced NO emission and increased HC and CO emissions. Finally, numerical modelling was performed to investigate the strategy of injecting small amount of ethanol fuel on reducing the fuel impingement and incomplete combustion caused by late direct injection. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available