4.7 Article

Backscatter-Enabled Efficient V2X Communication With Non-Orthogonal Multiple Access

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 70, Issue 2, Pages 1724-1735

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2021.3056220

Keywords

Performance evaluation; NOMA; Time division multiple access; Wireless sensor networks; Resource management; Optimization; Backscatter; Backscatter communication; Internet-of-things; non-orthogonal multiple access; power allocation; V2X; KKT

Ask authors/readers for more resources

The article introduces NOMA-enabled backscatter-based V2X networks and proposes a joint problem involving optimal power allocation. By transforming the problem into a convex one and using KKT conditions and sub-gradient methods to solve it, the study shows that the proposed approach outperforms traditional NOMA and TDMA schemes.
Non-orthogonal multiple access (NOMA) and backscatter communications are considered to be promising technologies for beyond the fifth-generation (5G) due to their applications in large-scale Internet-of-things networks for providing low-powered and spectral-efficient communication. NOMA also provides a new way to enable vehicle-to-everything (V2X) networks and improve the achievable rates through cooperation. Motivated by these developments, we provided a novel analysis for NOMA-enabled backscatter-based V2X networks. Specifically, we consider that several vehicles are connected to the base station (BS) via different roadside units (RSUs) and the backscatter tags along the road. These backscatter tags can be considered ultra-low-powered safety sensors that communicate with the vehicles using the same spectrum resources. To optimize the performance of such networks, a joint problem of optimal power allocation at BS and RSUs has been formulated. Subsequently, the problem has been transformed into a convex problem and solved using KKT conditions and sub-gradient methods. To evaluate the performance of the proposed solution, Monte-Carlo simulations have been performed in MATLAB. The acquired results clearly demonstrate that the proposed approach performs better than the conventional suboptimal NOMA scheme and joint optimal TDMA scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available