4.7 Article

Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS)

Journal

ENERGY
Volume 115, Issue -, Pages 626-636

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2016.09.028

Keywords

Modeling; Ultrasound reactor; Biodiesel production; RSM; ANFIS; FAME efficiency

Funding

  1. Razi University [1111]

Ask authors/readers for more resources

Biodiesel is as an alternative petro-diesel fuel produced from the renewable resources. The use of novel technologies such as ultrasound technology for biodiesel production intensifies the reaction and reduces the process cost. The present study is aimed to evaluate and compare the prediction and simulating efficiency of the response surface methodology (RSM) and adaptive Neuro-fuzzy inference system (ANFIS) approaches for modeling the transesterification yield achieved in ultrasonic reactor. The influence of independent variables (reactor diameter, liquid height and ultrasound intensity) on the conversion of fatty acid methyl esters (FAME) was investigated by Box-Behnken design of RSM and two ANFIS approaches (hybrid and back-propagation optimization methods). All models were compared statistically based on the training and validation data set by the coefficient of determination (R2), root mean squares error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and mean relative percent deviation (MRPD). The calculated R2 for RSM and two ANFIS models were 0.9669, 0.9812 and 0.9808, respectively. All models indicated good predictions, however, the ANFIS models were more precise compared to the RSM model, which proves that the ANFIS is a powerful tool for modeling and optimizing FAME production in ultrasound reactor. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available