4.6 Article

Time-lapse image registration by high-resolution time-shift scan

Journal

GEOPHYSICS
Volume 86, Issue 3, Pages M49-M58

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2020-0459.1

Keywords

-

Ask authors/readers for more resources

Seismic image registration is crucial for the joint interpretation of multivintage seismic images in time-lapse reservoir monitoring. The method of high-resolution time-shift analysis spectrum can help with manual and automatic picking, improving registration accuracy.
Seismic image registration is crucial for the joint interpre-tation of multivintage seismic images in time-lapse reservoir monitoring. Time-shift analysis is a commonly used method to estimate the warping function by creating a time-shift map, where the energy of each time-shift point in the 3D map indicates the probability of a correct registration. We have adopted a new method to obtain a high-resolution time-shift analysis spectrum, which can help with manual and automatic picking. The time-shift scan map is obtained by trying different local shifts and calculating the local sim-ilarity attributes between the shifted and reference images. We adopt a high-resolution calculation of the time-shift scan map by applying the nonstationary model constraint in solv -ing the local similarity attributes. The nonstationary model constraint ensures the time-shift scan map to be smooth in all physical dimensions, for example, time, local shift, and space. In addition, it permits variable smoothing strength across the whole volume, which enables the high resolution of the calculated time-shift scan map. We use an automatic-picking algorithm to demonstrate the accuracy of the high -resolution time-shift scan map and its positive influence on the time-lapse image registration. Synthetic (2D) and real (3D) time-lapse seismic images are used for demonstrating the better registration performance of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available