4.6 Article

Conditions for turbulent Ekman layers in precessionally driven flow

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 226, Issue 1, Pages 56-65

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggab088

Keywords

Earth rotation variations; Tides and planetary waves; Numerical modelling

Funding

  1. National Science Foundation [EAR-1430526]

Ask authors/readers for more resources

In this study, 3-D numerical calculations were used to assess the transition to turbulence in precessional flow, indicating that the transition to turbulence occurs near Re=500, higher than the typical value for stable Ekman layers. Complications due to fluid stratification or a magnetic field may suppress the transition to turbulence, reducing the likelihood of turbulent Ekman layers in the Earth's core.
Ekman layers develop at the boundaries of the Earth's fluid core in response to precession. Instabilities in these layers lead to turbulence when a local Reynolds number, Re, based on the thickness of the Ekman layer, exceeds a critical value. The transition to turbulence is often assessed using experiments for steady Ekman layers, where the interior geostrophic flow is independent of time. Precessionally driven flow varies on diurnal timescales, so the transition to turbulence may occur at a different value of Re. We use 3-D numerical calculations in a local Cartesian geometry to assess the transition to turbulence in precessional flow. Calculations retain the horizontal component of the rotation vector and account for the influence of fluid stratification. The transition to turbulence in a neutrally stratified fluid occurs near Re = 500, which is higher than the value Re = 150 usually cited for steady Ekman layers. However, it is comparable to the nominal value for precessional flow in the Earth. Complications due to fluid stratification or a magnetic field can suppress the transition to turbulence, reducing the likelihood of turbulent Ekman layers in the Earth's core.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available