4.7 Article

Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite

Journal

GEODERMA
Volume 383, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.geoderma.2020.114799

Keywords

Cadmium; Phosphate; Ferrihydrite; Goethite; Hematite; Synergistic adsorption

Categories

Funding

  1. National Key Research and Development Plan of China [2016YFD0800704]
  2. National Natural Science Foundation of China [41872044]
  3. China Postdoctoral Science Foundation [2019M663132]
  4. Newton Advanced Fellowship [NA150190]

Ask authors/readers for more resources

This study demonstrates that ferrihydrite has the strongest adsorption capacity for phosphate and cadmium among the three iron (oxyhydr)oxides studied, with synergistic adsorption of phosphate and cadmium observed. The research reveals the adsorption behaviors and mechanisms of different minerals, providing insights for developing surface complexation models.
Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were similar to 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant coadsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available