4.7 Article

Hypotonic osmotic shock treatment to enhance lipid and protein recoveries from concentrated saltwater Nannochloropsis slurries

Journal

FUEL
Volume 287, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.119442

Keywords

Microalgae pretreatment; Nannochloropsis; Osmotic shock; Cell disruption; Biofuels; Lipid extraction

Funding

  1. Alexander von Humboldt Foundation (Germany) [3.1-AUS-1192825-HFST-P]
  2. Science and Industry Endowment Fund (Australia) [PFl6-164]

Ask authors/readers for more resources

This study utilized hypotonic osmotic shock as a treatment step to enhance the recovery of biofuel-convertible lipids and proteins from lipid-rich saltwater Nannochloropsis gaditana slurries. The osmotic shock treatment weakened the structural integrity of the slurries and improved the efficiency of subsequent mechanical or chemical cell disruption technologies.
This study reports the use of hypotonic osmotic shock as a treatment step to enhance the recoveries of biofuel-convertible lipids and proteins from lipid-rich saltwater Nannochloropsis gaditana (N. gaditana) slurries (biomass content = similar to 140 mg biomass / g slurry, total lipid content = similar to 600 mg lipid /g biomass). The osmotic shock was induced through repeated washing of microalgal slurries with multiple batches of fresh water. Subjecting the slurries to 2 stages of freshwater washing resulted in a measurable damage to cell membranes (the uptake of membrane permeability marker increased by 6 folds), a partial loss of cell viability (only 64% of available cells were recoverable), and a minor release of free protein (similar to 2 wt% of available protein) from the biomass into the interstitial space of the slurries. Hypotonic osmotic shock was revealed to be ineffective in rupturing N. gaditana slurries (only 13 +/- 9% of available cells were ruptured after 2-stage washing) and, as such, had a limited prospect as a stand-alone cell disruption technology for the saltwater strain. The washing treatment, however, was found to be able to weaken the structural integrity of N. gaditana slurries and enhance the performance of subsequent mechanical or chemical cell disruption technologies when installed as a preparatory step. Applying the washing treatment prior to high-pressure homogenisation (HPH) and low solvent-to-biomass ratio hexane extraction (hexane : slurry = 1:1 w/w) for the recovery of biofuel-convertible lipids increased the extent of cell rupture from 28 +/- 8 to 46 +/- 19% of available cells and more than doubled neutral lipid yield from 25.1 +/- 2.0 to 64.6 +/- 4.9 wt% of available neutral lipid. Initial analysis revealed that the washing treatment had a minimal energy cost (similar to 6% of the total energy expenditure of downstream processing) and that its integration into HPH + hexane lipid recovery led to a 2.5 fold increase in the energy output of the biomass. Partnering the washing treatment with NaOH hydrolysis increased protein yield from 6.7 +/- 2.4 to 31.9 +/- 10.7 wt% of available protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available