4.7 Article

A novel approach to study the effect of motor silk-added pyrolysis tire oil on performance and emission characteristics of a diesel engine

Journal

FUEL
Volume 288, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.119668

Keywords

Pyrolyzed tire oil; Motor silk; Diesel fuel additive; Diesel engine; Performance; Emission

Ask authors/readers for more resources

The experimental study evaluated the usability of pyrolyzed tire oil supplemented with motor silk as an alternative fuel for diesel engines. The results showed that adding 30% PRO into euro diesel increases exhaust emissions and brake specific fuel consumption, but the addition of motor silk can reduce BSFC values by about 9%. Overall, the use of motor silk increases brake thermal efficiency and decreases BSFC values.
In this experimental study, the usability of pyrolyzed tire oil (PRO) supplemented with motor silk (MS) as an alternative fuel for diesel engines was evaluated. For this purpose, PRO, euro diesel (ED) and MS were tried in a single cylinder engine by mixing in different proportions as standard diesel fuel (ED100), EPRO10 (10% PRO + 90% ED), EPRO20, EPRO30, EPRO10MS1 (1% MS + 99% EPRO10), EPRO20MS1 and EPRO30MS1 fuels with different loads (500, 750, 1000, 1250, 1500-Watt) and at constant engine speed (3600 rpm). With the data obtained from the experiments, engine performance and exhaust emission values were examined and compared. According to the results of the experiment, it was determined that the addition of 30% PRO into the ED increases the exhaust emissions and brake specific fuel consumption (BSFC) without any change in the engine fuel system. With the addition of MS, an average of 9% reduction was achieved in BSFC values in all fuels. In the case of working with EPROMS fuels, it has been determined that emissions of smoke, hydrocarbon (HC) and carbon monoxide (CO) are decreased, and nitrogen oxide (NOx) emissions are increased. Compared to the EPRO30 fuel, the EPRO30MS1 test fuel released an average of 23.561% less HC emission. The highest NOx emission value was determined as 285 ppm at 1500-W load with EPRO20MS1. According to the experimental results, it was observed that the use of MS increased the brake thermal efficiency (BTHE) values and decreased BSFC values. The increase in the BTHE values of EPRO10MS1 was found to be approximately 2.184% when the average of all loads was compared to the engine reference fuel (ED100).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available