4.7 Article

Advanced liposome based PEGylated microgel as a novel release system for 5-fluorouracil against MCF-7 cancer cell

Journal

EUROPEAN POLYMER JOURNAL
Volume 146, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2021.110270

Keywords

5-FU; Drug delivery; Liposome; Microgel; In-vitro drug release; MCF-7 breast cancer

Funding

  1. Scientific and Technological Research Council of Turkey, Turkey [115Z726, 2211/C]

Ask authors/readers for more resources

Micro/nano-sized particles play a crucial role in optimizing the therapeutic index of cancer drugs. This study successfully modified multi-responsive microgels for sustained drug delivery of 5-FU, with PEGylated PMEMA microgel system showing faster drug release than DPPC liposome-based microgel system. The DPPC liposome-based microgel system demonstrated effective release of 5-FU on MCF-7 breast cancer cell line, indicating promising potential for further in-vivo studies.
Micro/nano-sized particles provide a control on optimization of the therapeutic index of cancer drugs. This study reports successful modification of the multi-responsive microgels based on a water-soluble 2-(N-morpholino) ethyl methacrylate (MEMA) monomer for sustained drug delivery of 5-fluorouracil (5-FU). PMEMA microgel hosting 5-FU loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposome system was successfully prepared. DPPC liposome-based PMEMA microgel system was also studied in in-vitro studies as a drug carrier and controlled drug release system in phosphate buffer solution and normal saline solution. The release of 5-FU from both PMEMA microgel and liposome-based PMEMA microgel systems was analyzed using HPLC with ultraviolet spectrophotometer detector (lambda 266 nm). The cytotoxic assays of liposome-based microgel and 5-FU loaded liposome-based microgel systems were investigated using L929 and MCF-7 which are mouse fibroblast cell line and breast cancer cell line, respectively. In conclusion, PEGylated PMEMA microgel and liposome-based PEGylated PMEMA microgel system provided long-time sustained drug release of 5-FU. It has been observed that the 5-FU release from PEGylated PMEMA system was faster than that of DPPC liposome-based microgel system. Additionally, 5-FU release from DPPC liposome-based microgel system was determined to be very effective on MCF-7 breast cancer cell line, which indicates great potential for further in-vivo studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available