4.7 Article

Short-term personal and outdoor exposure to ultrafine and fine particulate air pollution in association with blood pressure and lung function in healthy adults

Journal

ENVIRONMENTAL RESEARCH
Volume 194, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.110579

Keywords

Ultrafine particles; Lung Function; Blood pressure; Adults

Funding

  1. EU 7th Framework Program EXPO-SOMICS Project [308610]
  2. Compagnia di San Paolo (Turin, Italy)
  3. MRC [MR/S019669/1] Funding Source: UKRI

Ask authors/readers for more resources

Studies on the association between short-term exposure to outdoor fine (PM2.5) and ultrafine particles (UFP) and blood pressure and lung function have shown inconsistent results. Personal exposure to UFP, PM2.5, and soot was investigated in healthy adults in Switzerland, the Netherlands, and Italy. While there was no association found between UFP exposure and blood pressure or lung function, personal PM2.5 and soot exposures were positively associated with blood pressure.
Studies reporting on associations between short-term exposure to outdoor fine (PM2.5), and ultrafine particles (UFP) and blood pressure and lung function have been inconsistent. Few studies have characterized exposure by personal monitoring, which especially for UFP may have resulted in substantial exposure measurement error. We investigated the association between 24-h average personal UFP, PM2.5, and soot exposure and dose and the health parameters blood pressure and lung function. We further assessed the short-term associations between outdoor concentrations measured at a central monitoring site and near the residences and these health outcomes. We performed three 24-h personal exposure measurements for UFP, PM2.5, and soot in 132 healthy adults from Basel (Switzerland), Amsterdam and Utrecht (the Netherlands), and Turin (Italy). Monitoring of each subject was conducted in different seasons in a one-year study period. Subject's activity levels and associated ventilation rates were measured using actigraphy to calculate the inhaled dose. After each 24-h monitoring session, blood pressure and lung function were measured. Contemporaneously with personal measurements, UFP, PM2.5 and soot were measured outdoor at the subject's residential address and at a central site in the research area. As-sociations between short-term personal and outdoor exposure and dose to UFP, PM2.5, and soot and health outcomes were tested using linear mixed effect models. The 24-h mean personal, residential and central site outdoor UFP exposures were not associated with blood pressure or lung function. UFP mean exposures in the 2-h prior to the health test was also not associated with blood pressure and lung function. Personal, central site and residential PM2.5 exposure were positively associated with systolic blood pressure (about 1.4 mmHg increase per Interquartile range). Personal soot exposure and dose were positively associated with diastolic blood pressure (1.2 and 0.9 mmHg increase per Interquartile range). No consistent associations between PM2.5 or soot exposure and lung function were observed. Short-term personal, residential outdoor or central site exposure to UFP was not associated with blood pressure or lung function. Short-term personal PM2.5 and soot exposures were associated with blood pressure, but not lung function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available