4.7 Article

Exploring the linkage between PM2.5 levels and COVID-19 spread and its implications for socio-economic circles

Journal

ENVIRONMENTAL RESEARCH
Volume 193, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.110421

Keywords

-

Funding

  1. Higher Education Commission, Pakistan [PIN: 315-14941-2PS3-111, 21/Federal/PBAIRP/RD/HEC/2017]
  2. NUST, Pakistan

Ask authors/readers for more resources

The pneumonia-like disease from Wuhan, China was declared a pandemic by WHO and named COVID-19. Countries enforced socio-economic lockdown measures to prevent its spread. During the lockdown period in Pakistan, there was a substantial reduction in PM2.5 pollution levels, with major cities showing higher rates of COVID-19 spread in areas with poor air quality.
A pneumonia-like disease of unknown origin caused a catastrophe in Wuhan city, China. This disease spread to 215 countries affecting a wide range of people. World health organization (WHO) called it a pandemic and it was officially named as Severe Acute Respiratory Syndrome Corona virus 2 (SARS CoV-2), also known as Corona virus disease (COVID-19). This pandemic compelled countries to enforce a socio-economic lockdown to prevent its widespread. This paper focuses on how the particulate matter pollution was reduced during the lockdown period (23 March to April 15, 2020) as compared to before lockdown. Both ground-based and satellite observations were used to identify the improvement in air quality of Pakistan with primary focus on four major cities of Lahore, Islamabad, Karachi and Peshawar. Both datasets have shown a substantial reduction in PM2.5 pollution levels (ranging from 13% to 33% in case of satellite observations, while 23%-58% in ground based observations) across Pakistan. Result shows a higher rate of COVID-19 spread in major cities of Pakistan with poor air quality conditions. Yet more research is needed in order to establish linkage between COVID-19 spread and air pollution. However, it can be partially attributed to both higher rate of population density and frequent exposure of population to enhanced levels of PM2.5 concentrations before lockdown period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available