4.7 Article

Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling

Journal

ENVIRONMENTAL POLLUTION
Volume 272, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115986

Keywords

Microalgae; Biochar; Dye adsorption; Wet torrefaction; Environmental sustainability; Equilibrium and kinetic modeling

Funding

  1. Ministry of Science and Technology, Taiwan, R.O.C. [MOST 106-2923-E-006-002-MY3, MOST 109-2221-E-006-040-MY3, MOST 109-3116-F-006-016-CC1]
  2. Higher Education Sprout Project, Ministry of Education

Ask authors/readers for more resources

This study investigated the adsorption behavior of cationic and anionic dyes onto wet-torrefied Chlorella sp. microalgal biochar. The Langmuir isotherm was found to be the best model fit, suggesting monolayer adsorption as the dominant process, with maximum adsorption capacities of 113.00 mg/g for MB and 164.35 mg/g for CR. The results indicate that utilizing wet-torrefied microalgal biochar as an effective adsorbent for toxic dye removal is feasible.
This study aims to investigate the adsorption behavior of cationic and anionic dyes of methylene blue (MB) and Congo red (CR) onto wet-torrefied Chlorella sp. microalgal biochar respectively, as an approach to generate a waste-derived and low-cost adsorbent. The wet-torrefied microalgal biochar possessed microporous properties with pore diameter less than 2 nm. The optimum adsorbent dosage of wet-torrefied microalgal biochar for MB and CR dyes removal were determined at 1 g/L and 2 g/L, respectively, with their natural pHs as the optimum adsorption pHs. The determined equilibrium contact times for MB and CR were 120 h and 4 h, respectively. Based on the equilibrium modeling, the results revealed that Langmuir isotherm showed the best model fit, based on the highest R-2 coefficient, for both the adsorption processes of MB and CR using the wet-torrefied microalgal biochar, indicating that the monolayer adsorption was the dominant process. From the modeling, the maximum adsorption capacities for MB and CR were 113.00 mg/g and 164.35 mg/g, respectively. The kinetic modeling indicated the adsorption rate and mechanism of the dyes adsorption processes, which could be crucial for future modeling and application of wet-torrefied microalgal biochar. From the results, it suggests that the valorization of microalgae by utilizing wet-torrefied microalgal biochar as the effective adsorbent for the removal of toxic dyes with an approach of microalgal biorefinery and value-added application to the environment is feasible. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available