4.6 Article

Stochastic and Self-Organisation Patterns in a 17-Year PM10 Time Series in Athens, Greece

Journal

ENTROPY
Volume 23, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/e23030307

Keywords

air pollution; PM10; Statistical analysis; Boltzmann entropy; Tsallis entropy

Ask authors/readers for more resources

This paper investigates a 17-year PM10 time series from five stations in Athens, Greece using statistical and entropy methods to analyze existing stochastic and self-organisation trends. It finds decreasing trends at all stations and explores self-organization through Boltzmann and Tsallis entropy in selected parts. The study identifies non-stochastic areas with fractal, long-memory, and self-organisation patterns, combining multiple fractal and SOC analysis techniques.
This paper utilises statistical and entropy methods for the investigation of a 17-year PM10 time series recorded from five stations in Athens, Greece, in order to delineate existing stochastic and self-organisation trends. Stochastic patterns are analysed via lumping and sliding, in windows of various lengths. Decreasing trends are found between Windows 1 and 3500-4000, for all stations. Self-organisation is studied through Boltzmann and Tsallis entropy via sliding and symbolic dynamics in selected parts. Several values are below -2 (Boltzmann entropy) and 1.18 (Tsallis entropy) over the Boltzmann constant. A published method is utilised to locate areas for which the PM10 system is out of stochastic behaviour and, simultaneously, exhibits critical self-organised tendencies. Sixty-six two-month windows are found for various dates. From these, nine are common to at least three different stations. Combining previous publications, two areas are non-stochastic and exhibit, simultaneously, fractal, long-memory and self-organisation patterns through a combination of 15 different fractal and SOC analysis techniques. In these areas, block-entropy (range 0.650-2.924) is significantly lower compared to the remaining areas of non-stochastic but self-organisation trends. It is the first time to utilise entropy analysis for PM10 series and, importantly, in combination with results from previously published fractal methods. Data Set License: license under which the dataset is made available (CC0, CC-BY, CC-BY-SA, CC-BY-NC, etc.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available