4.7 Article

A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm

Journal

ENGINEERING WITH COMPUTERS
Volume 38, Issue SUPPL 5, Pages 3901-3914

Publisher

SPRINGER
DOI: 10.1007/s00366-020-01272-9

Keywords

Clay; Friction angle; Shear strength; Deep learning; Harris hawks optimization

Ask authors/readers for more resources

In this study, a new artificial intelligence model was proposed for predicting the friction angle of clays from different areas. Through various tests and comparisons, it was found that this model can accurately predict the friction angle of clays from different regions.
In landslide susceptibility mapping or evaluating slope stability, the shear strength parameters of rocks and soils and their effectiveness are undeniable. However, they have not been studied for all-natural materials, as well as different locations. Therefore, this paper proposes a novel generalized artificial intelligence model for estimating the friction angle of clays from different areas/locations for evaluating slope stability or landslide susceptibility mapping, including the datasets from the UK, New Zealand, Indonesia, Venezuela, USA, Japan, and Italy. The robustness and consistency of the model's prediction were checked by testing with various datasets having different geological and geomorphological setups. Accordingly, 162 observations from different areas/locations were collected from the locations and regions above for this aim. Subsequently, deep learning techniques were applied to develop the multiple layer perceptron (MLP) neural network model (i.e., DMLP model) with the goal of error reduction of the MLP model. Next, Harris Hawks optimization (HHO) algorithm was applied to boost the optimization of the DMLP model for predicting friction angle of clays aiming to get a better accuracy than those of the DMLP model, called HHO-DMLP model. A DMLP neural network without optimization of the HHO algorithm and two other conventional models (i.e., SVM and RF) were also employed to compare with the proposed HHO-DMLP model. The results showed that the proposed HHO-DMLP model predicted the friction angle of clays better than those of the other models. It can reflect the friction angle of clays with acceptable accuracy from different locations and regions (i.e., MSE = 12.042; RMSE = 3.470; R-2 = 0.796; MAPE = 0.182; and VAF = 78.806). The DMLP model without optimization of the HHO algorithm provided slightly lower accuracy (i.e., MSE = 15.151; RMSE = 3.892; R-2 = 0.738; MAPE = 0.202; and VAF = 73.431). Besides, two other conventional models (i.e., SVM and RF) provided low reliability, especially over-fitting happened with the RF model, and it was not recommended to be used to predict the friction angle of clays (i.e., RMSE = 6.325 and R-2 = 0.377 on the training dataset, but RMSE = 1.669 and R-2 = 0.961 on the testing dataset).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available