4.7 Article

Techno-economic and environmental assessment of a hybrid renewable energy system using multi-objective genetic algorithm: A case study for remote Island in Bangladesh

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 230, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.113823

Keywords

Renewable energy; Cost of energy; Life cycle emissions; Reliability

Funding

  1. RUET, Bangladesh

Ask authors/readers for more resources

The study investigates a hybrid energy system configuration for providing stable power to a remote Island in Bangladesh, utilizing multi-objective optimization techniques to adjust component sizes. Results show that the multi-objective approach provides better environmental benefits and intelligent techniques are superior to software tools for cost and environmental considerations.
Renewable hybrid energy systems are well-proven to be capable of supplying reliable power in the remote areas, where grid extension is not viable due to geographical constraints, but not absolutely emissions free. The present study investigates a hybrid energy system that entails photovoltaic module, wind turbine, biogas generator, and vanadium redox flow battery for supplying stable power to a remote Island, Saint Martin, Bangladesh. Two wellknown multi-objective optimisation techniques such as non-dominated sorting genetic algorithm II and infeasibility driven evolutionary algorithm are applied to size the hybrid system components based on the cost of energy ($/kWh) and life cycle emissions (kg CO2-eq/yr) under a certain reliability. In addition, a fuzzy decision making technique is applied to find the optimal solution. A comparative analysis of using single objective function is compared with the multi-objective one. In addition, results from the non-dominated sorting genetic algorithm II optimisation technique is compared with the widely utilized software hybrid optimisation of multiple energy resources tool and the infeasibility driven evolutionary algorithm. Although the cost of energy is relatively comparable between the objective functions considered, the multi-objective approach provides better environmental benefits than the single objective optimisation system. The analyzed results also indicate that the intelligent techniques are the superior to the hybrid optimisation of multiple energy resources software tool in terms of costs and environmental point of view. Furthermore, the unit electricity cost of the proposed hybrid system configuration is comparable with the grid electricity supply at the loss of power supply probability of over 8% with significantly lower life cycle emissions. Superscript/Subscript Available ABSTRACT Renewable hybrid energy systems are well-proven to be capable of supplying reliable power in the remote areas, where grid extension is not viable due to geographical constraints, but not absolutely emissions free. The present study investigates a hybrid energy system that entails photovoltaic module, wind turbine, biogas generator, and vanadium redox flow battery for supplying stable power to a remote Island, Saint Martin, Bangladesh. Two wellknown multi-objective optimisation techniques such as non-dominated sorting genetic algorithm II and infeasibility driven evolutionary algorithm are applied to size the hybrid system components based on the cost of energy ($/kWh) and life cycle emissions (kg CO2-eq/yr) under a certain reliability. In addition, a fuzzy decision making technique is applied to find the optimal solution. A comparative analysis of using single objective function is compared with the multi-objective one. In addition, results from the non-dominated sorting genetic algorithm II optimisation technique is compared with the widely utilized software hybrid optimisation of multiple energy resources tool and the infeasibility driven evolutionary algorithm. Although the cost of energy is relatively comparable between the objective functions considered, the multi-objective approach provides better environmental benefits than the single objective optimisation system. The analyzed results also indicate that the intelligent techniques are the superior to the hybrid optimisation of multiple energy resources software tool in terms of costs and environmental point of view. Furthermore, the unit electricity cost of the proposed hybrid system configuration is comparable with the grid electricity supply at the loss of power supply probability of over 8% with significantly lower life cycle emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available