4.5 Article

Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues

Journal

ENERGIES
Volume 14, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/en14051297

Keywords

NaOH activation; biochars; competitive adsorption; ground coffee residue; herbicides

Categories

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2020R1A4A1019568]

Ask authors/readers for more resources

This study compared the adsorption of herbicides using non-activated and NaOH-activated coffee residue biochars, finding that the activated biochar had a greater surface area and pore volume, leading to more effective removal of herbicides.
In this study, the adsorption of herbicides using ground coffee residue biochars without (GCRB) and with NaOH activation (GCRB-N) was compared to provide deeper insights into their adsorption behaviors and mechanisms. The physicochemical characteristics of GCRB and GCRB-N were analyzed using Brunauer-Emmett-Teller surface area, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction and the effects of pH, temperature, ionic strength, and humic acids on the adsorption of herbicides were identified. Moreover, the adsorption kinetics and isotherms were studied. The specific surface area and total pore volume of GCRB-N (405.33 m(2)/g and 0.293 cm(3)/g) were greater than those of GCRB (3.83 m(2)/g and 0.014 cm(3)/g). The GCBR-N could more effectively remove the herbicides (Q(e,exp) of Alachlor = 122.71 mu mol/g, Q(e,exp) of Diuron = 166.42 mu mol/g, and Q(e,exp) of Simazine = 99.16 mu mol/g) than GCRB (Q(e,exp) of Alachlor = 11.74 mu mol/g, Q(e,exp) of Diuron = 9.95 mu mol/g, and Q(e,exp) of Simazine = 6.53 mu mol/g). These results suggested that chemical activation with NaOH might be a promising option to make the GCRB more practical and effective for removing herbicides in the aqueous solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available