4.1 Article

Involvement of β-catenin in Androgen-induced Mesenchymal Transition of Breast MDA-MB-453 Cancer Cells

Journal

ENDOCRINE RESEARCH
Volume 46, Issue 3, Pages 114-128

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07435800.2021.1895829

Keywords

Androgen receptor; β -catenin; gsk-3 β mda-MB-453 cells; partial EMT

Funding

  1. University of Jordan [1554/2017/19]
  2. Ministry of Higher Education and Research [MPH/2/7/2014]

Ask authors/readers for more resources

DHT treatment induced partial EMT in MDA-MB-453 cells, highlighting the critical role of beta-catenin in this phenotypic change. Upon AR activation, AR may reciprocally mediate mesenchymal transition of these cells downstream of GSK-3 beta.
Purpose The cellular and molecular dynamics of DHT-induced EMT in MDA-MB-453 cells were investigated. Methods:PCR arrays were used to examine the expression of EMT-regulatory genes. Immunoblotting was used to detect protein levels and confirm protein-protein interaction following immunoprecipitation. Immunofluorescence was used to observe rearrangement of the actin cytoskeleton and cell morphology. Cell migration was assessed by transwell assay Results: Change of cell morphology was concomitant with increased cell migration after treating cells with DHT. Exposure of cells to DHT for one hour was sufficient to induce changes in cell morphology and actin cytoskeleton after 72 hours indicating altered gene expression. A long-term lasting nuclear translocation of AR was observed after a short exposure of cells to DHT. Investigating the expression of 84 EMT-related genes revealed down-expression of beta-catenin, N-cadherin, and TCF-4 and increased expression of Slug, all of which were confirmed at the protein level. Yet, not only early interaction of AR and beta-catenin was observed following AR activation, inhibition of beta-catenin blocked DHT-induced mesenchymal transition and migration. Wnt signaling was found to be partially important in DHT-induced morphological alteration. The mesenchymal transition of cells could be induced by treating cells with an inhibitor of glycogen synthase kinase-3 beta, an enzyme that inhibits beta-catenin; this morphological transition could be reversed by antagonizing AR suggesting that AR functions downstream of beta-catenin. Conclusions: These results suggest that MDA-MB-453 cells undergo partial EMT induced by DHT, beta-catenin is critical for this phenotypic change, and AR probably reciprocally mediates the mesenchymal transition of these cells upon activation of GSK-3 beta.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available