4.7 Article

Exposure to volatile organic compounds may be associated with oxidative DNA damage-mediated childhood asthma

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 210, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.111864

Keywords

Volatile organic compounds (VOCs); Urinary metabolites; Oxidative DNA damage; Passive smoking; Asthma

Funding

  1. National Natural Science Foundation of China [41731279, 21777048, 21477041]

Ask authors/readers for more resources

The study found that asthmatic children had significantly higher levels of DNA damage and VOC metabolites compared to healthy children, and a significant positive correlation with OH-Cot. The importance of respiratory exposure to VOCs for children in Guangzhou was highlighted. There were significant dose-response relationships between most VOC metabolites and 8-OHdG.
Volatile organic compounds (VOCs) are important and ubiquitous air pollutants, which may lead to a significant increase in the prevalence of respiratory diseases. To investigate the relationships between VOCs exposure and childhood asthma, 252 asthmatic children and 69 healthy children were recruited. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage), trans-3'-hydroxycotinine (OH-Cot, a biomarker of passive smoking) and 27 VOC metabolites were simultaneously determined by an ultra-high-performance liquid chromatography-tandem mass spectrometer. Results showed that levels of 8-OHdG and most VOC metabolites in asthmatic children were significantly higher than those in healthy children. More than half of the VOC metabolites were significantly and positively associated with OH-Cot with maximal beta coefficient of 0.169, suggesting that second-hand smoking is one important source of VOCs exposure for children in Guangzhou. Significant dose response relationships between most VOC metabolites and 8-OHdG were observed. Each unit increase in ln-transformed VOC metabolite levels was significantly associated with 5.5-32% increase in ln-transformed 8-OHdG level. Moreover, each unit increase in ln-transformed 8-OHdG level was associated with an 896% increased odd ratios (OR) of asthma in children (OR = 9.96, 95% confidence intervals (CI): 4.75, 20.9), indicating that oxidative stress induced by VOCs exposure may have a significant impact on childhood asthma. Urinary 3-&4-Methylhippuric acid (3-&4-MHA, OR: 5.78, 95% CI: 3.50, 9.54), rac 2-Aminothiazoline-4-carboxylic acid (ATCA, OR: 2.90, 95% CI: 1.69, 4.99) and N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA, OR: 2.76, 95% CI: 1.73, 4.43) which may derive from m/p-xylene, cyanide and 1,3-butadiene exposure, respectively, could significantly and maximally increase the odds of asthma. Interestingly, they also had the strongest associations with 8-OHdG among all investigated VOC metabolites. Moreover, DHBMA strongly correlated with most VOC metabolites. Hence, DHBMA is a suitable biomarker to indicate not only VOCs exposure profile, but also the DNA damage-mediated asthma induced by VOCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available