4.7 Article

Chloroacetanilides inhibit photosynthesis and disrupt the thylakoid membranes of the dinoflagellate Prorocentrum minimum as revealed with metazachlor treatment

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 211, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.111928

Keywords

Metazachlor; Prorocentrum minimum; Photosynthesis inhibition; Gene expression; Oxidative stress

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2020R1A2C2013373]
  2. Ministry of Oceans and Fisheries (MOF), Korea [20190518]

Ask authors/readers for more resources

This study evaluated the cellular and molecular effects of chloroacetanilides on marine phototrophs, showing that it severely damages chloroplasts and impairs photosynthesis function in marine phototrophs.
The chloroacetanilides are among the most commonly used herbicides worldwide, which contaminate aquatic environments and affect aquatic phototrophs. Their sub-lethal toxicity has been evaluated using freshwater algae; however, the modes of cellular toxicity and levels of toxicity to marine organisms are not fully understood. In the present study, we assessed the cellular and molecular effects of chloroacetanilides on marine phototrophs using the dinoflagellate Prorocentrum minimum and the herbicide metazachlor (MZC). The MZC treatment led to a considerable reduction in cell number and pigment, and the EC50 of MZC was calculated to be 0.647 mg/L. The photosynthetic parameters, Fv/Fm and chlorophyll fluorescence significantly decreased with MZC exposure time in a dose-dependent manner. In addition, MZC significantly induced photosynthesis genes, including PmpsbA, PmpsaA, and PmatpB, and the antioxidant PmGST, but not PmKatG. These findings were well matched to reactive oxygen species (ROS) production in MZC-treated cells. Interestingly, we observed inflated vacuoles, undivided chloroplasts, and breakdown of thylakoid membranes in MZC-treated cells. These results support the hypothesis that MZC severely damages chloroplasts, resulting in dysfunction of the dinoflagellate photosynthesis and possibly marine phototrophs in the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available