4.7 Article

Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 132, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2021.104314

Keywords

Microfluidics; Fruit fly; Zebrafish; Heart monitoring; Cardiac screening; Image analysis software

Funding

  1. Natural Sciences and Engineering Council of Canada (NSERC)
  2. Ministry of Colleges and Universities
  3. Ontario Graduate Scholarship (OGS)

Ask authors/readers for more resources

This study quantified the heartbeat parameters of small model organisms, fruit fly and zebrafish, in-vivo using microfluidics and a novel MATLAB-based software. The software automatically detected heartbeats, extracted heartbeat signals, and removed noise, enabling quantification of various heart parameters in intact larvae. This method provides a new approach for research in cardiac physiology of model organisms.
In this paper, the heartbeat parameters of small model organisms, i.e. Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish), were quantified in-vivo in intact larvae using microfluidics and a novel MATLAB-based software. Among different developmental stages of flies and zebrafish, the larval stage is privileged due to biological maturity, optical accessibility, and the myogenic nature of the heart. Conventional methods for parametric quantification of heart activities are complex and mostly done on dissected, irreversibly immobilized, or anesthetized larvae. Microfluidics has helped with reversible immobilization without the need for anesthesia, but heart monitoring is still done manually due to challenges associated with the movement of floating organs and cardiac interruptions. In our MATLAB software applied to videos recorded in microfluidic-based wholeorganism assays, we have used image segmentation to automatically detect the heart and extract the heartbeat signal based on pixel intensity variations of the most contractile region of the heart tube. The smoothness priors approach (SPA) was applied to remove the undesired low-frequency noises caused by environmental light changes or heart movement. Heart rate and arrhythmicity were automatically measured from the detrended heartbeat signal while other parameters including end-diastolic and end-systolic diameters, shortening distance, shortening time, fractional shortening, and shortening velocity were quantified for the first time in intact larvae, using M-mode images under bright field microscopy. The software was able to detect more than 94% of the heartbeats and the cardiac arrests in intact Drosophila larvae. Our user-friendly software enables in-vivo quantification of D. melanogaster and D. rerio larval heart functions in microfluidic devices, with the potential to be applied to other biological models and used for automatic screening of drugs and alleles that affect their heart.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available