4.6 Article

Fast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks

Journal

COMPUTERS & CHEMICAL ENGINEERING
Volume 145, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compchemeng.2020.107174

Keywords

Learning-based predictive control; Scenario-based MPC; Gaussian processes; Deep neural networks; Bayesian hyperparameter optimization

Funding

  1. National Science Foundation [1839527]
  2. National Aeronautics and Space Administration (NASA) [NNX17AJ31G]
  3. Directorate For Engineering [1839527] Funding Source: National Science Foundation
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1839527] Funding Source: National Science Foundation

Ask authors/readers for more resources

Learning-based multistage MPC (msMPC) introduces Gaussian Processes to adapt scenario trees online for systems with hard-to-model dynamics and time-varying plant-model mismatch, showing promise for control of hard-to-model systems with fast dynamics on millisecond timescales.
Scenario-based model predictive control (MPC) methods introduce recourse into optimal control and can thus reduce the conservativeness inherent to open-loop robust MPC. However, the uncertainty scenarios are often generated offline using worst-case uncertainty bounds quantified a priori, limiting the potential gains in control performance. This paper presents a learning-based multistage MPC (msMPC) for systems with hard-to-model dynamics and time-varying plant-model mismatch. Gaussian Processes (GP) are used to learn state- and input-dependent plant-model mismatch in real-time and accordingly adapt the scenario tree online. Due to the increased computational complexity associated with incorporating the GP predictions into the optimal control problem, the learning-based msMPC (LB-msMPC) law is approximated by a deep neural network (DNN) that is cheap-to-evaluate online and has a small memory footprint, which makes it suitable for embedded applications. In addition, we present a novel algorithm for training the DNN-based controller that uses a GP description of the plant-model mismatch to generate closed-loop simulation data, which ensures the LB-msMPC law is evaluated in regions of the state space most relevant to closed-loop operation. The proposed LB-msMPC strategy is demonstrated on a cold atmospheric plasma jet with applications in (bio)materials processing. The simulation results indicate the promise of the approximate LB-msMPC strategy for control of hard-to-model systems with fast dynamics on millisecond timescales. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available