4.7 Article

Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals

Journal

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2021.105941

Keywords

Attention deficit hyperactive disorder; Conduct disorder; Nonlinear features; Sequential forward selection; K-fold validation; Classifiers; Machine learning

Ask authors/readers for more resources

A novel automated system using brain signals was developed to classify ADHD, CD, and ADHD + CD with a highest accuracy of 97.88%. This system can potentially aid clinicians in faster and more accurate diagnosis and treatment for children with ADHD and/or CD. Further testing with larger data is required before clinical applications can be considered.
Background and objectives: Attention deficit hyperactivity disorder (ADHD) is often presented with conduct disorder (CD). There is currently no objective laboratory test or diagnostic method to discern between ADHD and CD, and diagnosis is further made difficult as ADHD is a common neuro-developmental disorder often presenting with other co-morbid difficulties; and in particular with conduct disorder which has a high degree of associated behavioural challenges. A novel automated system (AS) is proposed as a convenient supplementary tool to support clinicians in their diagnostic decisions. To the best of our knowledge, we are the first group to develop an automated classification system to classify ADHD, CD and ADHD + CD classes using brain signals. Methods: The empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods were employed to decompose the electroencephalogram (EEG) signals. Autoregressive modelling coefficients and relative wavelet energy were then computed on the signals. Various nonlinear features were extracted from the decomposed coefficients. Adaptive synthetic sampling (ADASYN) was then employed to balance the dataset. The significant features were selected using sequential forward selection method. The highly discriminatory features were subsequently fed to an array of classifiers. Results: The highest accuracy of 97.88% was achieved with the K-Nearest Neighbour (KNN) classifier. The proposed system was developed using ten-fold validation strategy on EEG data from 123 children. To the best of our knowledge this is the first study to develop an AS for the classification of ADHD, CD and ADHD + CD classes using EEG signals. Potential application: Our AS can potentially be used as a web-based application with cloud system to aid the clinical diagnosis of ADHD and/or CD, thus supporting faster and accurate treatment for the children. It is important to note that testing with larger data is required before the AS can be employed for clinical applications. (c) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available