4.7 Article

Intratumoral Plasmid IL12 Expands CD8+ T Cells and Induces a CXCR3 Gene Signature in Triple-negative Breast Tumors that Sensitizes Patients to Anti-PD-1 Therapy

Journal

CLINICAL CANCER RESEARCH
Volume 27, Issue 9, Pages 2481-2493

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-20-3944

Keywords

-

Categories

Funding

  1. OncoSec Medical
  2. SusanGKomen for the Cure [180062]
  3. National Center For Advancing Translational Sciences of the NIH [UL1TR003142]

Ask authors/readers for more resources

This study demonstrates that Tavo treatment can enhance the CXCR3 gene expression within tumors, leading to improved antigen presentation, T-cell infiltration, and PD-1/PD-L1 expression, ultimately improving the therapeutic outcomes for patients with TNBC.
Purpose: Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Antibodies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) have entered the therapeutic landscape in TNBC, but only a minority of patients benefit. A way to reliably enhance immunogenicity, T-cell infiltration, and predict responsiveness is critically needed. Patients and Methods: Using mouse models of TNBC, we evaluate immune activation and tumor targeting of intratumoral IL12 plasmid followed by electroporation (tavokinogene telse-plasmid; Tavo). We further present a single-arm, prospective clinical trial of Tavo monotherapy in patients with treatment refractory, advanced TNBC (OMS-I140). Finally, we expand these findings using publicly available breast cancer and melanoma datasets. Results: Single-cell RNAsequencing of murine tumors identified a CXCR3 gene signature (CXCR3-GS) following Tavo treatment associated with enhanced antigen presentation, T-cell infiltration and expansion, and PD-1/PD-L1 expression. Assessment of pretreatment and posttreatment tissue from patients confirms enrichment of this CXCR3-GS in tumors from patients that exhibited an enhancement of CD8(+) T-cell infiltration following treatment. One patient, previously unresponsive to anti-PD-L1 therapy, but who exhibited an increased CXCR3-GS after Tavo treatment, went on to receive additional anti-PD-1 therapy as their immediate next treatment after OMS-I140, and demonstrated a significant clinical response. Conclusions: These data show a safe, effective intratumoral therapy that can enhance antigen presentation and recruit CD8 T cells, which are required for the antitumor efficacy. We identify a Tavo treatment-related gene signature associated with improved outcomes and conversion of nonresponsive tumors, potentially even beyond TNBC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available