4.7 Article

Visible light assisted photocatalytic degradation of commercial dyes and waste water by SneF co-doped titanium dioxide nanoparticles with potential antimicrobial application

Journal

CHEMOSPHERE
Volume 277, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130247

Keywords

Titanium dioxide; Co-doping; Rutile; Fish processing waste water; Dyes; Photodegradation

Funding

  1. King Saud University Saudi Arabia [RG-1441-504]

Ask authors/readers for more resources

The study investigates the effects of TiO2 nanoparticles doped with Sn and F on optical, structural, photocatalytic, and antibacterial activities, showing that doping can suppress the growth of certain phases in TiO2 and alter its optical properties. Doped particles exhibit enhanced degradation efficiency towards fish processing waste water and dyes compared to undoped samples, suggesting potential applications in environmental remediation.
The disintegration of natural water sources signals out the scarcity of adam's ale and will be hurdle for the human physical state. So it is necessary to decrease waste loads and hence pressure on the ecology for the sustainability of fishery and dye industry. Herein, TiO2 nanoparticles doped with Sn and F are synthesized and the influence of simultaneous doping on the optical, surface morphological, structural, photocatalytic and antibacterial activities are investigated. Doping of TiO2 with Sn and F suppress the growth of both anatase and rutile phase because of the dissimilar boundaries. All the prepared doped and undoped samples are found to possess tetragonal structure. The influence of F and Sn in TiO2 lattice is recognized with the XRD and FT-IR spectra of the prepared particles The size of the obtained nanoparticles decreases as increasing concentration of F and Sn. TiO2 is showing the presence of spherical and ellipsoidal nanoparticles whereas doped samples showing nanobulk, pentagons and rods. The absorption edge of the doped samples are blue shifted with increasing concentration of dopants indicates the control of optical absorption property of TiO2. The visible light assisted photocatalytic degradation of fish processing waste water by doped and undoped samples are found to be established as 0.0076/min and 0.0071/min respectively. Visible light assisted degradation of commercially available dyes and fish processing waste water is assessed. Methyl blue showed enhanced photocatalytic activity under visible light irradiation compared to Methyl orange. It is observed that all the prepared particles show good antimicrobial activity against Staphylococcus aureus. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available