4.7 Article

Environmental risks to freshwater organisms from the mycotoxins deoxynivalenol and zearalenone using Species Sensitivity Distributions

Journal

CHEMOSPHERE
Volume 267, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129279

Keywords

Emerging chemical; Ecological risk; Hazard assessment; Lethal toxicity

Funding

  1. FERA Science Limited, UK [NE/N008790/1]

Ask authors/readers for more resources

This study investigated the acute toxicity of two common mycotoxins, deoxynivalenol (DON) and zearalenone (ZON), on a variety of freshwater organisms. The results showed that crustaceans were the most sensitive to DON, while cnidarians and molluscs were more sensitive to ZON. Combining these novel invertebrate toxicity results provides valuable information for the analysis of Species Sensitivity Distributions.
In this study, laboratory experiments have addressed the acute toxicity of two common mycotoxins, deoxynivalenol (DON) and zearalenone (ZON), in a range of freshwater organisms (including rotifers Brachionus calyciflorus, insects Chironomus riparius (larvae), crustaceans Daphnia pulex and Thamnocephalus platyurus, cnidarians Hydra vulgaris, molluscs Lymnaea stagnalis (embryos) and Protozoa Tetrahymena thermophila). Acute EC50 values highlight crustaceans as the most sensitive organisms to DON, with T. platyurus having a 24 h EC50 of 0.14 and D. magna having a 48 h EC50 of 0.13 mg DON/L. During exposures to ZON, H. vulgaris and L stagnalis embryos showed the highest sensitivity; mortality EC50 values were 1.1 (96 h) and 0.42 mg ZON/L (7 d), respectively. Combining these novel invertebrate toxicity results, along with recent published data for freshwater plant and fish toxicity for analysis of Species Sensitivity Distributions, provides freshwater HC5 values of 5.2 mu g DON/L and 43 mu g ZON/L, respectively. Using highest reported environmental concentrations and following REACH guidelines, risk ratios calculated here show the risk of ZON to freshwater organisms is low. In contrast, DON may periodically because for concern in streams subject to high agricultural run-off, likely during certain times of year where cereal crops are susceptible to higher fungal infections rates and may pose increased risks due to climate change. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available