4.7 Article

Robust charge carrier by Fe3O4 in Fe3O4/WO3 core-shell photocatalyst loaded on UiO-66(Ti) for urea photo-oxidation

Journal

CHEMOSPHERE
Volume 267, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129206

Keywords

Fe3O4 charge carrier; Urea photo-oxidation; UiO-66(Zr/Ti) electron donor; WO3 electron acceptor; Central composite design

Ask authors/readers for more resources

This study successfully prepared a core-shell structure photocatalyst with magnetic Fe3O4 core and WO3 shell on UiO-66(Zr/Ti) nanoflakes, which exhibited superior catalytic activity in urea photo-oxidation. A central composite design was employed to find the optimal conditions, providing a new strategy for the application of large-scale photoreactors.
In this study, a facile four-step hydrothermal method was utilized to deposit a core-shell structure on UiO-66(Zr/Ti) nanoflake (NFs) as a visible-light-driven photocatalyst. The core was magnetic Fe3O4 which served as a charge carrier coated with WO3 shell. The as-prepared photocatalyst was characterized by XRD, VSM, BET, FTIR, FE-SEM, UV-Vis-DRS, and PL techniques which proved successful deposition of Fe3O4@WO3 core/shell particle on UiO-66(Zr/Ti)-NFs. The obtained photocatalyst was subsequently applied for urea photo-oxidation. This magnetically recoverable photocatalyst exhibited superior activity due to its desirable band alignment, high stability, and generation of the photo-induced charge carriers, as well as providing a high surface area with low mass transfer resistance. Fe3O4 core acted as charge-carrier to transport the photogenerated charges of UiO-66(Zr/Ti)-NIFs (electron-donor) to WO3 charge-collectors for effective photoconversion. The central composite design was applied to design the experiments matrix in which flow rate, pH, irradiation time, catalyst mass, and initial urea concentration were considered as operational factors. The optimized condition was found by defining the desirability function. 90% degradation percentage was achieved at 550 mL/min solution flowrate, pH = 7, 120 min irradiation time, 0.22 g UiO-66(Zr)-NFs-Fe3O4@WO3, and 40 mg/L of the initial concentration of urea with the desirability value of 0.89. Such a superior photocatalytic activity of UiO-66-Fe304@WO3 can be ascribed to the reclamation of Fe3O4 as a low bandgap carrier, which accelerated the conveyance of electrons and followed surpassing charge separation. Our present findings open a new strategy to produce a wide range of core-shell heterogeneous catalysts to be applied in photoreactors scale-up. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available