4.7 Article

Theoretical study on the adsorption mechanism of PbCl2/CdCl2 by kaolinite during municipal solid waste pyrolysis

Journal

CHEMOSPHERE
Volume 267, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129184

Keywords

Kaolinite; Dehydroxylation; Adsorption sites; Non-bond interaction; Electron transfer

Funding

  1. National Key Research and Development Program of China [2018YFC1901202]

Ask authors/readers for more resources

The study investigates the adsorption mechanism of PbCl2 and CdCl2 on kaolinite through computational methods, revealing the influence of pore structure during dehydroxylation process. It is found that Al and Si surfaces of kaolinite have slightly different adsorption behaviors towards the two substances.
In the process of municipal solid waste (MSW) pyrolysis, kaolinite possesses an outstanding trapping effect on semi-volatile metal vapors (Pb, Cd) through physical and chemical adsorption. In this paper, the microscopic mechanism of PbCl2 and CdCl2 adsorption on the surface of Al rings and Si rings of kaolinite was investigated by combining Monte Carlo method with density functional theory (DFT). The calculations indicate that the continuously enriched pore structure in the process of dehydroxylation indirectly influences the adsorption of PbCl2/CdCl2 by kaolinite. Under the non-bond interaction and electron transfer induction, PbCl2 molecules are more conveniently adsorbed on the Al-(001) surface than CdCl2, while the adsorption sites of CdCl2 molecules are more widely distributed on the Si-(001) surface. Moreover, the transform in the Al-coordination and the exposed active oxygen atoms significantly affect the adsorption activity of kaolinite (the capability to gain and lose electrons). Considering the energy barrier and electrophilic nucleophilic sensitivity, it is more feasible for PbCl2/CdCl2 to be adsorbed near IV/V-coordinated Al and active O under Van der Waals action. Subsequently, IV/V-coordinated Al will act as an electron acceptor, and the active oxygen atoms after dehydrogenation will serve as an electron donor. Under the induction of the energy difference of frontier orbitals, the electrons transfer will encourage the formation of more stable adsorption states. The results shed new light on strengthening the adsorption activity of kaolinite to PbCl2/CdCl2 in the process of MSW pyrolysis. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available