4.7 Article

Quantification of seven microbial volatile organic compounds in human serum by solid-phase microextraction gas chromatography-tandem mass spectrometry

Journal

CHEMOSPHERE
Volume 266, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128970

Keywords

Microbial volatile organic compounds; 3-Methylfuran; 3-Octanone; 1-Octen-3-ol; 2-Ethyl-1-hexanol; Geosmin

Funding

  1. Science Education and Workforce Development Programs at Oak Ridge National Laboratory

Ask authors/readers for more resources

Microbial volatile organic compounds (MVOCs) are metabolites of fungal and bacterial growth that can lead to health issues, such as sick building syndrome. A novel high-throughput method has been developed for accurate and precise quantification of MVOCs in human serum, aiding in the detection and quantification of harmful exposures.
Microbial volatile organic compounds (MVOCs) are primary and secondary metabolites of fungal and bacterial growth. Changes in environmental conditions (e.g., humidity, light, oxygen, and carbon dioxide) influence microbial growth in indoor environments. Prolonged human exposure to MVOCs has been directly associated with sick building syndrome (SBS), respiratory irritation, and asthma-like symptoms. However, no method exists for assessing MVOC exposure by quantifying them in human serum. We developed a novel, high-throughput automated method for quantifying seven MVOCs (3-methylfuran, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol, 2-ethyl-1-hexanol, and geosmin) in human serum. The method quantifies the target analytes using solid-phase microextraction gas chromatography-tandem mass spectrometry at low parts-per-billion levels. Limits of detection ranged from 0.076 to 2.77 mu g/L. This method provides excellent linearity over the concentration range for the analytes, with coefficients of determination >0.992. Recovery in human serum was between 84.5% and 113%, and analyte precision ranged from 0.38% to 8.78%. The intra-day and inter-day reproducibility showed coefficients of variation <= 11% and <= 8%, respectively. Accurate and precise quantification of MVOCs is necessary for detecting and quantifying harmful human exposures in environments with active microbial growth. The method is well suited for high-throughput analysis to aid investigations of unhealthy exposures to microbial emissions. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available