4.7 Article

Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor

Journal

CHEMOSPHERE
Volume 264, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128548

Keywords

Electro-assisted autohydrogenotrophic reduction; Dual-chamber biofilm-electrode reactor; Microbial community; Perchlorate; Perchlorate-reducing bacteria

Funding

  1. National Natural Science Foundation of China (NSFC) [51779088, 51709104]

Ask authors/readers for more resources

The electro-assisted autohydrogenotrophic reduction of perchlorate was successfully achieved using a dual-chamber biofilm-electrode reactor, with controlled pH and in-situ hydrogen generation. High-throughput sequencing revealed changes in microbial community composition with increasing perchlorate concentration.
The electro-assisted autohydrogenotrophic reduction of perchlorate (ClO4-) was investigated in a dual-chamber biofilm-electrode reactor (BER), in which the microbial community was inoculated from natural sediments. To avoid the effect of extreme pH and direct electron transfer on perchlorate reduction, a novel cathode configuration was designed. The pH of the cathode compartment was successfully controlled in the range of 7.2-8.4 during whole experiment. The effective biological autohydrogenotrophic reduction of perchlorate was achieved using hydrogen generated in-situ on the electrode surface, and the removal rate of 10 mg L-1 perchlorate reached 98.16% at HRT of 48 h. The highest perchlorate removal flux reached to 1498.420 mg m(-2) . d(-1) with a 0.410 kW . h g-perchlorate(-1) energy consumption. The microbial community evolution in the BER was determined by high-throughput sequencing and the results indicated that the Firmicutes and Bacteroidetes were dominant at phylum level when perchlorate concentration was 10 mg L-1 or lower. And the Proteobacteria became ascendant at the perchlorate concentration of 20 mg L-1. The functional populations for perchlorate reduction were successfully enriched including Nitrosomonas (30%), Thermomonas (9%), Comamonas (8%) and Hydrogenophaga (3%). Meanwhile, the proportion of functional population in biofilm linked to perchlorate concentration. With the increase of influent perchlorate concentration, the perchlorate-reducing bacteria (PRB) were enriched successfully and became ascendant. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available