4.7 Article

Enhanced visible light-driven photocatalytic activity of reduced graphene oxide/cadmium sulfide composite: Methylparaben degradation mechanism and toxicity

Journal

CHEMOSPHERE
Volume 264, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128481

Keywords

CdS; Degradation; Methylparaben; Photocatalysis; RGO

Funding

  1. National Research Foundation of Korea [NRF-2020R1I1A3054429]

Ask authors/readers for more resources

The RGOCdS nanocomposite synthesized through solvothermal process showed high efficiency in degrading MeP and good recyclability. Photocatalytic experiments demonstrated the superior degradation performance of RGOCdS compared to pure CdS, without residual intermediates.
Reduced graphene oxide/cadmium sulfide (RGOCdS) nanocomposite synthesized through solvothermal process was used for methylparaben (MeP) degradation. The crystallinity of the nanocomposite was ascertained through X-ray diffraction. High resolution transmission electron microscope (HRTEM) results proved the absence of any free particle beyond the catalyst surface ensuring the composite nature of the prepared material. The enhancement in the activity on doping with RGO was substantiated by diffuse reflectance spectroscopy (DRS-UV). It is evident from the photocatalytic degradation experiments that RGOCdS is more efficient than pure CdS. Maximum MeP degradation (100%) was achieved after 90 min of irradiation with 750 mg/L RGOCdS dosage at an acidic pH of 3, for an initial MeP concentration of 30 mg/ L. The degradation mechanism substantiated through HPLC-MS/MS analysis showed the complete degradation of MeP without any residual intermediaries. The catalyst could be sustained and reused for up to 9 cycles of usage. Phytotoxicity and mycotoxicity results evidently ascertain the environmental implications of the photocatalyst material. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available