4.7 Article

Natural organic matter does not diminish the mammalian bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin

Journal

CHEMOSPHERE
Volume 264, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128420

Keywords

TCDD; Amorphous natural organic matter; Bioavailability

Funding

  1. National Institue of Environmental Health Sciences of National Institute Health [P42ES00491]

Ask authors/readers for more resources

TCDD is a toxic and persistent organic pollutant. Previous studies showed that TCDD adsorbed to inorganic geosorbents had similar bioavailability to mice as TCDD dissolved in corn oil, while sequestration by activated carbons eliminated bioavailability.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic and persistent organic pollutant found in soils and sediments. It has been linked to several adverse health outcomes in humans and wildlife, including suppression of the immune system. TCDD is strongly sorbed to soils/sediments due to its extremely low water solubility. Presently, the bioavailability of soil/sediment-sorbed TCDD to mammals is not completely understood. Our previous studies demonstrated that TCDD adsorbed to representative inorganic geosorbents (i.e. porous silica and smectite clay) exhibited the same bioavailability to mice as TCDD dissolved in corn oil, whereas sequestration by activated carbons eliminated TCDD bioavailability. In this study, we evaluated the effects of amorphous natural organic matter (NOM), primarily in the form of aquatic humic and fulvic acids, on the mouse bioavailability of TCDD. An aqueous suspension of TCDD mixed with NOM was administered to mice via oral gavage. The relative bioavailability of TCDD was assessed by two sensitive aryl hydrocarbon receptor-mediated responses in mice: 1) hepatic induction of cyp1A1 mRNA; and 2) suppression of immunoglobulin M (IgM) antibody-forming cell (AFC) response which is an indicator of immunotoxicity. Hepatic induction of cyp1A1 mRNA and suppression of IgM AFC induced by TCDD were similar in the NOM-sorbed form and dissolved in corn oil, revealing no loss of bioavailability when associated with NOM. Hence, NOM-associated TCDD is as capable of suppressing humoral immunity in mice as TCDD dissolved in corn oil, indicating that NOM-sorbed TCDD is likely to fully retain its bioavailability to mammals and, by inference, humans. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available