4.6 Review

Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review

Journal

CHEMICAL RECORD
Volume 21, Issue 4, Pages 663-714

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/tcr.202000138

Keywords

channel design; flow field; fuel cells; PEMFC; water management

Funding

  1. RCUK EPSRC [EP/P003605/1]

Ask authors/readers for more resources

PEMFC is a fuel cell used for power generation without emissions. Better water management and flow field design are crucial for enhanced performance. Various flow field designs' effects on PEMFC performance have been studied in detail.
Proton Exchange Membrane Fuel Cell (PEMFC) is majorly used for power generation without producing any emission. In PEMFC, the water generated in the cathode heavily affects the performance of fuel cell which needs better water management. The flow channel designs, dimensions, shape and size of the rib/channel, effective area of the flow channel and material properties are considered for better water management and performance enhancement of the PEMFC in addition to the inlet reactant's mass flow rate, flow directions, relative humidity, pressure and temperature. With the purpose of increasing the output energy of the fuel cell, many flow field designs are being developed continuously. In this paper, the performance of various conventional, modified, hybrid and new flow field designs of the PEMFC is studied in detail. Further the effects of channel tapering, channel bending, landing to channels width ratios, channel cross-sections and insertion of baffles/blockages/pin-fins/inserts are reviewed. The power density of the flow field designs, the physical parameters like active area, dimensions of channel/rib, number of channels; and the operating parameters like temperature and pressure are also tabulated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available