4.7 Article

Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 418, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129282

Keywords

Thermoplastic polyurethane; Carbon nanotube; Electrical conductivity; EMI shielding; Thermal conductivity; Wearable sensor

Funding

  1. Korea Evaluation Institute of Industrial Technology, Republic of Korea

Ask authors/readers for more resources

This study explores the effects of different lengths of CNTs on the performance of TPU composites, with long CNTs offering higher EMI shielding efficiency and short CNTs enhancing thermal conductivity. Long CNTs help form unique interconnected conductive networks within the TPU matrix, improving the overall performance of the composites.
Lightweight, flexible, and thermally conductive electromagnetic interference (EMI) shielding materials have garnered front facet research interest because of urgent demand to address the EM wave pollution. Herein, inspired from the effectiveness of interconnected networks of different types of carbon nanotubes (CNTs), an endeavored to design three types of CNTs based thermoplastic polyurethane (TPU) composites through a facile solution blending with non-solvent induced phase separation (NIPS) strategy. The effect of different length of CNTs on the EMI shielding, electrical and thermal conductivity performance of TPU nanocomposites have been studied explicitly. The composite with long length CNT (10 wt%) offered a remarkable EMI shielding efficiency of 42.5 dB, the electrical conductivity of 1.9 x 10-3 S/cm, whereas composite with short length CNTs showed a thermal conductivity of 0.51 W/mK and the corresponding thermal conductivity enhancement efficiency exceeded 145% relative to pure TPU. Incorporation of long length CNTs helped to form unique interconnected conductive networks within the TPU matrix that boost more the electron or charge transferability inside the composites, improvement in mechanical properties, EMI shielding, and electrical properties than that of short length CNTs. In contrast, short length CNTs display significant electromechanical performance and heat transferability than that of long length CNTs. The composites showed a high response in electrical conductivity and minor change in EMI shielding efficiency with repeated bending cycles. This work provides a corelated remark of different types of CNT based TPU composites for superior EMI SE and thermal management applications for next generation wearable and stretchable electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available