4.6 Article

BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells

Journal

CELLULAR SIGNALLING
Volume 78, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2020.109843

Keywords

NLRP3; EC; Glucose metabolism; BDNF; KLF2; HK1

Categories

Funding

  1. Jiangsu Provincial Health and Wellness Committee Research Project [H2018001]
  2. Natural Science Foundation of Jiangsu Province [BK20201272]

Ask authors/readers for more resources

The study indicates that BDNF inhibits ox-LDL induced NLRP3 inflammasome formation and pyroptosis in HUVECs through the KLF2/HK1-mediated modulation of glucose metabolism and preservation of mitochondrial homeostasis.
NLRP3 inflammasome-mediated vascular EC pyroptosis is a key event in the pathogenesis of atherosclerosis. Dysregulation of glucose metabolism is involved in EC dysfunction. Although BDNF plays a protective role in vascular endothelium physiological activity, the mechanisms underlying this activity are not yet clear. In this study, we investigated the role of BDNF in NLRP3 inflammasome-mediated EC pyroptosis and its associated reprogramming of glucose metabolism. HUVECs were treated with human rBDNF under ox-LDL stimulation. rBDNF alleviated ox-LDL-induced NLRP3 inflammasome formation and HUVEC pyroptosis, as evaluated by NLRP3, caspase1-p10, interleukin-18, and interleukin-1 beta protein levels, co-localization of NLRP3 and apoptosis-associated speck-like protein, and lactate dehydrogenase release. These effects were prevented by tropomyosin receptor kinase B inhibition and KLF2 silencing. The hyper-activation of glycolysis induced by ox-LDL-induced was mitigated by rBDNF via KLF2 as assessed by glucose uptake, lactate production, and extracellular acidification rate. In addition, the BDNF/KLF2 pathway preserved the mitochondrial membrane potential, intracellular reactive oxygen species generation, electron transport chain processing, oxygen consumption rate, and adenosine triphosphate production. Furthermore, KLF2 interacted with HK1 and HK1 overexpression evoked NLRP3 inflammasome formation. At the clinical level, plasma BDNF and lactate levels were measured in 274 patients who underwent computed tomography and coronary angiography for CAD diagnosis. Patients with CAD had lower BDNF and increased lactate levels than those without CAD. In 94 patients with CAD, circulating BDNF levels were inversely associated with lactate levels. In the receiver operating characteristic analysis of CAD, the areas under the curves for 1/BDNF, lactate, and 1/BDNF+lactate were 0.707, 0.702, and 0.753 respectively. These results indicate that BDNF and lactate are linked in atherosclerotic patients, and BDNF inhibits ox-LDL induced NLRP3 inflammasome formation and pyroptosis in HUVECs via KLF2/HK1-mediated glucose metabolism modulation and mitochondrial homeostasis preservation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available