4.5 Article

Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin

Journal

CARBOHYDRATE RESEARCH
Volume 501, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carres.2021.108274

Keywords

Glucose; Fructose; Arabinose; Spectroscopy; HSA-Binding; Molecular docking

Funding

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  3. Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)

Ask authors/readers for more resources

The increase in glucose, fructose, or arabinose levels in the bloodstream may cause functional perturbation on the binding capacity of albumin, emphasizing the necessity of controlling carbohydrate levels to maintain the interaction and distribution of exogenous and endogenous compounds by HSA.
Monosaccharides, e.g. fructose, glucose, and arabinose are present in most foods consumed daily, whether, in natural or industrialized forms, and their concentration in the human bloodstream can impact the formation of advanced glycation end-products (AGEs, prevalent in people with diabetes) impacting the profile of Human Serum Albumin (HSA) in biodistribution of endogenous and exogenous compounds. Multiple spectroscopic techniques (UV-vis, circular dichroism, steady-state, and time-resolved fluorescence) combined with molecular docking showed that carbohydrates interact weakly and spontaneously via a ground-state association with HSA. The binding is enthalpically and entropically driven in the subdomain IIA (site I) and perturb weakly the secondary structure of the albumin. Hydrogen bonding and van der Waals forces are the main intermolecular interactions involved in the ligand binding, as well as hydrophobic effects related to the release of hydration shell upon ligand binding. Overall, the results indicated that an increase in glucose, fructose or arabinose level in the human bloodstream may cause functional perturbation on the binding capacity of albumin. Therefore, there is the necessity of carbohydrate level control in the bloodstream to not compromise the interaction and distribution of exogenous and endogenous compounds by HSA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available