4.7 Article

Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma

Journal

CARBOHYDRATE POLYMERS
Volume 253, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.117194

Keywords

Hyaluronic acid; Nanogels; Phenylboronic acid; Lactoferrin; Reduction-sensitive; Glioma targeting

Funding

  1. Open Project of State Key Laboratory of Natural Medicines [3144060210]
  2. College Students Innovation Project for the R&D of Novel Drugs [J1310032]

Ask authors/readers for more resources

The study developed reduction-sensitive dual-targeting nanogels for glioma therapy, showing excellent drug release and cytotoxicity, providing a novel solution for glioma treatment.
Herein, lactoferrin (Lf)/phenylboronic acid (PBA)-functionalized hyaluronic acid nanogels crosslinked with disulfide-bond crosslinker was developed as a reduction-sensitive dual-targeting glioma therapeutic platform for doxorubicin hydrochloride (DOX) delivery (Lf-DOX/PBNG). Spherical Lf-DOX/PBNG with optimized physicochemical properties was obtained, and it could rapidly release the encapsulated DOX under high glutathione concentration. Moreover, enhanced cytotoxicity, superior cellular uptake efficiency, and significantly improved brain permeability of Lf-DOX/PBNG were observed in cytological studies compared with those of DOX solution, DOX-loaded PBA functionalized nanogels (DOX/PBNG), and Lf modified DOX-loaded nanogels (Lf-DOX/NG). The pharmacokinetic study exhibited that the area under the curve of DOX/PBNG, Lf-DOX/NG, and Lf-DOX/PBNG increased by 8.12, 4.20 and 4.32 times compared with that of DOX solution, respectively. The brain accumulation of Lf-DOX/PBNG was verified in biodistribution study to be 12.37 and 4.67 times of DOX solution and DOX/PBNG, respectively. These findings suggest that Lf-DOX/PBNG is an excellent candidate for achieving effective glioma targeting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available