4.7 Article

3D nanoflower-like layered double hydroxide modified quaternized chitosan/polyvinyl alcohol composite anion conductive membranes for fuel cells

Journal

CARBOHYDRATE POLYMERS
Volume 256, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.117439

Keywords

Layered double hydroxide; Three-dimensional hierarchical flower-like structure; Quaternized chitosan; Anion exchange membranes; Fuel cells

Funding

  1. National Natural Science Foundation of China [51903078]

Ask authors/readers for more resources

In this study, a composite anion exchange membrane was prepared to enhance the ion conductivity and stability of the membrane through structural design and material synthesis. The membrane exhibited superior performance, laying a foundation for applications in fuel cells and other fields.
To solve the trade-off problem among ionic conductivity, mechanical and chemical stability of anion exchange membranes (AEMs), quaternized chitosan (QCS) was first prepared and then was blended with polyvinyl alcohol (PVA) to improve mechanical strength of QCS. Afterwards, three-dimensional (3D) hierarchical flower-like layered double hydroxides (LDHs) were prepared via one-pot ethylene glycol-assisted solvothermal method, and then were incorporated into QCS/PVA blend matrix to fabricate composite AEMs. By constructing 3D hierarchical structure, the active sites of LDH nanosheets are fully exposed, thus impressive ion conductivity, alkali and fuel resistant ability of LDH nanosheets can be rationally utilized. The composite membrane displayed the maximum OH- conductivity of 25.7 mS cm(-1), which was 48.6 % higher than that of the pristine membrane. Alkaline stability measurement proved that the composite membranes kept residual ionic conductivity of as high as 92 % after immersion in a 2 M KOH for 100 h. Due to the decreased methanol permeability and increased conductivity, the composite membrane with 6% LDHs content exhibited a peak power density of 73 mW cm(-2) at 60 degrees C, whereas the pristine membrane demonstrated only 40 mW cm(-2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available