4.7 Review

Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment

Journal

CANCER IMMUNOLOGY IMMUNOTHERAPY
Volume 70, Issue 8, Pages 2103-2121

Publisher

SPRINGER
DOI: 10.1007/s00262-020-02842-y

Keywords

T regulatory cells; Hypoxia; Tumor microenvironment; Metabolism; Glycolysis; Fatty acid metabolism

Ask authors/readers for more resources

Metabolic dysregulation in the hypoxic tumor microenvironment plays a crucial role in the development of solid tumors, particularly in the metabolic reprogramming of Tregs. This reprogramming can affect the biological properties of Tregs, increasing their presence and proliferation within the TME. Understanding and regulating the metabolism of Tregs may have important implications for the treatment of tumors.
Metabolic dysregulation in the hypoxic tumor microenvironment (TME) is considered as a hallmark of solid tumors, leading to changes in biosynthetic pathways favoring onset, survival and proliferation of malignant cells. Within the TME, hypoxic milieu favors metabolic reprogramming of tumor cells, which subsequently affects biological properties of tumor-infiltrating immune cells. T regulatory cells (Tregs), including both circulating and tissue-resident cells, are particularly susceptible to hypoxic metabolic signaling that can reprogram their biological and physicochemical properties. Furthermore, metabolic reprogramming modifies Tregs to utilize alternative substrates and undergo a plethora of metabolic events to meet their energy demands. Major impact of this metabolic reprogramming can result in differentiation, survival, excessive secretion of immunosuppressive cytokines and proliferation of Tregs within the TME, which in turn dampen anti-tumor immune responses. Studies on fine-tuning of Treg metabolism are challenging due to heterogenicity of tissue-resident Tregs and their dynamic functions. In this review, we highlight tumor intrinsic and extrinsic factors, which can influence Treg metabolism in the hypoxic TME. Moreover, we focus on metabolic reprogramming of Tregs that could unveil potential regulatory networks favoring tumorigenesis/progression, and provide novel insights, including inhibitors against acetyl-coA carboxylase 1 and transforming growth factor beta into targeting Treg metabolism for therapeutic benefits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available