4.7 Article

Prediction and collection of protein-metabolite interactions

Journal

BRIEFINGS IN BIOINFORMATICS
Volume 22, Issue 5, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbab014

Keywords

protein-metabolite interactions; cellular process; mass spectrometry

Funding

  1. National Key Research and Development Program of China [2016YFD0500406]
  2. National Natural Science Foundation of China [61702421, U1811262, 62076082]

Ask authors/readers for more resources

PMI-DB is a freely accessible, comprehensive and accurate resource of PMIs, providing non-interaction samples and supporting deep learning prediction of PMIs, which helps reduce experimental costs and facilitates the construction of more accurate algorithms.
Interactions between proteins and small molecule metabolites play vital roles in regulating protein functions and controlling various cellular processes. The activities of metabolic enzymes, transcription factors, transporters and membrane receptors can all be mediated through protein-metabolite interactions (PMIs). Compared with the rich knowledge of protein-protein interactions, little is known about PMIs. To the best of our knowledge, no existing database has been developed for collecting PMIs. The recent rapid development of large-scale mass spectrometry analysis of biomolecules has led to the discovery of large amounts of PMIs. Therefore, we developed the PMI-DB to provide a comprehensive and accurate resource of PMIs. A total of 49 785 entries were manually collected in the PMI-DB, corresponding to 23 small molecule metabolites, 9631 proteins and 4 species. Unlike other databases that only provide positive samples, the PMI-DB provides non-interaction between proteins and metabolites, which not only reduces the experimental cost for biological experimenters but also facilitates the construction of more accurate algorithms for researchers using machine learning. To show the convenience of the PMI-DB, we developed a deep learning-based method to predict PMIs in the PMI-DB and compared it with several methods. The experimental results show that the area under the curve and area under the precision-recall curve of our method are 0.88 and 0.95, respectively. Overall, the PMI-DB provides a user-friendly interface for browsing the biological functions of metabolites/proteins of interest, and experimental techniques for identifying PMIs in different species, which provides important support for furthering the understanding of cellular processes. The PMI-DB is freely accessible at http://easybioai.com/PMIDB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available