4.5 Article

Additive-manufactured Ti-6Al-4V/Polyetheretherketone composite porous cage for Interbody fusion: bone growth and biocompatibility evaluation in a porcine model

Journal

BMC MUSCULOSKELETAL DISORDERS
Volume 22, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12891-021-04022-0

Keywords

Additive manufacturing (3D printing); Ti; 6Al; 4V (Ti alloy); polyetheretherketone (PEEK) composite porous cage; porcine study

Funding

  1. Chiayi Chang Gung Memorial Hospital [CMRPG6D0172, CMRPG6D0252, CMRPG6D0113]
  2. Industrial Technology Research Institute [H301AR5J30]

Ask authors/readers for more resources

A porous Ti alloy/PEEK composite interbody cage was developed, with high-porosity groups showing improved bone growth and Ti alloy groups demonstrating higher bone formation compared to PEEK.
BackgroundWe developed a porous Ti alloy/PEEK composite interbody cage by utilizing the advantages of polyetheretherketone (PEEK) and titanium alloy (Ti alloy) in combination with additive manufacturing technology.MethodsPorous Ti alloy/PEEK composite cages were manufactured using various controlled porosities. Anterior intervertebral lumbar fusion and posterior augmentation were performed at three vertebral levels on 20 female pigs. Each level was randomly implanted with one of the five cages that were tested: a commercialized pure PEEK cage, a Ti alloy/PEEK composite cage with nonporous Ti alloy endplates, and three composite cages with porosities of 40, 60, and 80%, respectively. Micro-computed tomography (CT), backscattered-electron SEM (BSE-SEM), and histological analyses were performed.ResultsMicro-CT and histological analyses revealed improved bone growth in high-porosity groups. Micro-CT and BSE-SEM demonstrated that structures with high porosities, especially 60 and 80%, facilitated more bone formation inside the implant but not outside the implant. Histological analysis also showed that bone formation was higher in Ti alloy groups than in the PEEK group.ConclusionThe composite cage presents the biological advantages of Ti alloy porous endplates and the mechanical and radiographic advantages of the PEEK central core, which makes it suitable for use as a single implant for intervertebral fusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available