4.7 Article

Research on the electrocatalytic reduction of CO2 by microorganisms with a nano-titanium carburizing electrode

Journal

BIOELECTROCHEMISTRY
Volume 137, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2020.107672

Keywords

Nano-titanium carburizing electrode; Microbial electrosynthesis; Reduce carbon dioxide

Funding

  1. National Natural Science Foundation of China [51574185]

Ask authors/readers for more resources

The study demonstrates that improving electrode performance can effectively enhance the efficiency of microbial electrosynthesis for CO2 reduction. Metal-based carbon hybrid materials show promise due to their good biological affinity, stability, and electrochemical performance.
The reduction of CO2 to organics using microbial electrosynthesis (MES) is currently a popular research direction in the environmental field. In this study, we evaluated the effect of the electrode material on the production of organics from CO2 in microbial electrosynthesis with a mixed-culture biocathode. The electrode material is an important factor influencing electron transfer, since it directly affects the efficiency of CO2 reduction. In this study, we compared the performance of a graphite electrode and a metal-based carbon hybrid material electrode for the electro-reduction of CO2. The cathode potential was set to -0.8 V (vs Ag/AgCl). When the cathode material was changed from a graphite electrode to a nano-titanium carburizing electrode, the current density of MES increased from 1.66 +/- 0.2 A.m(-2) to 2.75 +/- 0.2 A.m(-2), acetate accumulation increased from 127 mg/L to 234 mg/L, butyrate accumulation increased from 46 mg/L to 86.5 mg/L, and the total electron recovery of MES increased to nearly 70%. The results show that improving electrode performance can effectively improve the efficiency of MES for reducing CO2. Metal-based carbon hybrid materials have good biological affinity and stability and also have good electrochemical performance. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available