4.6 Article

Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1 α pathway

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2021.01.086

Keywords

Rosmarinic acid; Diabetic cardiomyopathy; SIRT1; Mitochondria

Funding

  1. Natural Science Foundation of Shaanxi [2020JQ-940]

Ask authors/readers for more resources

The study showed that rosmarinic acid (RA) could improve cardiac function and prevent mitochondrial injury in diabetic cardiomyopathy (DCM) possibly through activating the SIRT1/PGC-1 alpha pathway.
Mitochondrial injury plays an essential role in the pathogenesis of diabetic cardiomyopathy (DCM). Previous studies demonstrated that rosmarinic acid (RA) treatment prevented high glucose-induced mitochondrial injury in vitro. However, whether RA can ameliorate cardiac function by preventing mitochondrial injury in DCM is unknown. The SIRT1/PGC-1 alpha pathway has emerged as an important regulator of metabolic control and other mitochondrial functions. The present study was undertaken to determine the effects of RA on mitochondrial and cardiac function in DCM as well as the involvement of the SIRT1/PGC-1 alpha pathway. Our results revealed that RA improved cardiac systolic and diastolic function and prevented mitochondrial injury in DCM, as shown by the reduced blood glucose and lipid levels, increased mitochondrial membrane potential levels, improved adenosine triphosphate synthesis, and inhibited apoptosis (P < 0.05). Moreover, RA upregulated the expression of SIRT1 and PGC-1a in DCM mice and high glucose-treated H9c2 cardiomyocytes (P < 0.05). Further mechanistic studies in H9c2 cardiomyocytes revealed that suppression of SIRT1 by Sh-SIRT1 counteracted the effects of RA on high glucose-induced abnormal metabolism of glucose and lipids, oxidative stress and apoptosis (P < 0.05). Taken together, these data indicate that RA prevented mitochondrial injury and cardiac dysfunction in DCM mice, and the SIRT1/PGC-1a pathway mediated the protective effects of RA. (c) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available