4.3 Article

Urban heat islands in Hong Kong: Bonding with atmospheric stability

Journal

ATMOSPHERIC SCIENCE LETTERS
Volume 22, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1002/asl.1032

Keywords

atmospheric anomaly; dynamic stability; Hong Kong; urban boundary layer; urban heat island

Funding

  1. National Natural Science Foundation of China [41875010, 42071394]
  2. Hong Kong Research Grants Council [11306417]
  3. Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province [2019B121205004]

Ask authors/readers for more resources

This study investigates the daily and seasonal dynamics of urban heat islands in Hong Kong, revealing that the intensity of UHIs is stronger with higher atmospheric stability. Different atmospheric anomalies are observed in summer and winter, providing potential predictors for UHI intensity.
A barrier to urban heat island (UHI) mitigation is the lack of quantitative attribution of the various contributions to UHI intensity. This study demonstrates the daily and seasonal dynamics of UHIs in Hong Kong, a subtropical high-density city. The nocturnal UHIs of the city are grouped according to various dynamic stability conditions (neutral, weak stable, and strong stable) of the boundary layer. Results indicate that the stronger the atmospheric stability, the more intense the UHI. The atmospheric anomalies linked to these stability classifications are hence revealed. In summer, nights of neutral (strong stable) stratification are controlled by low (high) pressure with rising (sinking) motion, less (more) precipitation, and lower (higher) air temperature at the surface. In winter, the influence of the large-scale circulation system of the East Asian winter monsoon is significant. In the upper layer, the East Asian jet stream retreats westward (is displaced northward) on nights with neutral (strong stable) atmospheric stratification. At the surface, southeast China is hot and humid on neutral nights, while on strong stable nights, the coastal regions of southeast China are dry, and East Asia is dominated by positive surface air temperature anomalies. Atmospheric anomalies are generally nonsignificant on nights with weak stable stratification in both summer and winter. These findings provide potential predictors for UHI intensity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available