4.7 Article

Disk Tearing: Implications for Black Hole Accretion and AGN Variability

Journal

ASTROPHYSICAL JOURNAL
Volume 909, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/abdc25

Keywords

Accretion; Circumstellar disks; Relativistic disks; Stellar accretion disks; Hydrodynamics; Hydrodynamical simulations; Black hole physics

Funding

  1. Science and Technology Facilities Council [ST/M005917/1]
  2. European Unions Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant [823823]
  3. BEIS capital funding via STFC capital grants [ST/K000373/1, ST/R002363/1]
  4. STFC DiRAC Operations grant [ST/R001014/1]

Ask authors/readers for more resources

Accretion disks around black holes can become warped and unstable, leading to a dynamic and variable accretion flow. Recent studies have shown that strongly warped disks may break into discrete rings, causing observable fluctuations in the accretion process.
Accretion disks around black holes power some of the most luminous objects in the universe. Disks that are misaligned to the black hole spin can become warped over time by Lense-Thirring precession. Recent work has shown that strongly warped disks can become unstable, causing the disk to break into discrete rings producing a more dynamic and variable accretion flow. In a companion paper, we present numerical simulations of this instability and the resulting dynamics. In this paper, we discuss the implications of this dynamics for accreting black hole systems, with particular focus on the variability of active galactic nuclei (AGN). We discuss the timescales on which variability might manifest, as well as the impact of the observer orientation with respect to the black hole spin axis. When the disk warp is unstable near the inner edge of the disk, we find quasi-periodic behavior of the inner disk, which may explain the recent quasi-periodic eruptions observed in, for example, the Seyfert 2 galaxy GSN 069 and in the galactic nucleus of RX J1301.9+2747. These eruptions are thought to be similar to the heartbeat modes observed in some X-ray binaries (e.g., GRS 1915+105 and IGR J17091-3624). When the instability manifests at larger radii in the disk, we find that the central accretion rate can vary on timescales that may be commensurate with, e.g., changing-look AGN. We therefore suggest that some of the variability properties of accreting black hole systems may be explained by the disk being significantly warped, leading to disk tearing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available