4.6 Article

Analysis of apsidal motion in eclipsing binaries using TESS data: I. A test of gravitational theories

Journal

ASTRONOMY & ASTROPHYSICS
Volume 649, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202040004

Keywords

binaries: eclipsing; gravitation; relativistic processes; techniques: photometric

Funding

  1. NASA Explorer Program
  2. Spanish Ministry of Science and Innovation
  3. European Regional Development Fund [PGC2018-098153-B-C33]
  4. Generalitat de Catalunya/CERCA programme
  5. Agencia de Gestio d'Ajuts Universitaris i de Recerca of the Generalitat de Catalunya
  6. European FEDER/ERF funds, L'FSE inverteix en el teu futur

Ask authors/readers for more resources

Using high-precision light curves from the TESS mission, researchers successfully determined the apsidal motion rates of multiple eclipsing binary systems and measured the general relativistic apsidal motion rates for the first time using this method. The results showed perfect agreement with theoretical predictions, allowing for stringent constraints on two parameters of the parametrised post-Newtonian formalism.
Context. The change in the argument of periastron of eclipsing binaries, that is, the apsidal motion caused by classical and relativistic effects, can be measured from variations in the difference between the time of minimum light of the primary and secondary eclipses. Poor apsidal motion rate determinations and large uncertainties in the classical term have hampered previous attempts to determine the general relativistic term with sufficient precision to test general relativity predictions.Aims. As a product of the TESS mission, thousands of high-precision light curves from eclipsing binaries are now available. Using a selection of suitable well-studied eccentric eclipsing binary systems, we aim to determine their apsidal motion rates and place constraints on key gravitational parameters.Methods. We compute the time of minimum light from the TESS light curves of 15 eclipsing binaries with precise absolute parameters and with an expected general relativistic contribution to the total apsidal motion rate of greater than 60%. We use the changing primary and secondary eclipse timing differences over time to compute the apsidal motion rate, when possible, or the difference between the linear periods as computed from primary and secondary eclipses. For a greater time baseline we carefully combine the high-precision TESS timings with archival reliable timings.Results. We determine the apsidal motion rate of 9 eclipsing binaries, 5 of which are reported for the first time. From these, we are able to measure the general relativistic apsidal motion rate of 6 systems with sufficient precision to test general relativity for the first time using this method. This test explores a regime of gravitational forces and potentials that had not been probed before. We find perfect agreement with theoretical predictions, and we are able to set stringent constraints on two parameters of the parametrised post-Newtonian formalism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available