4.6 Article

Homoharringtonine inhibits melanoma cells proliferation in vitro and vivo by inducing DNA damage, apoptosis, and G2/M cell cycle arrest

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 700, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2021.108774

Keywords

Homoharringtonine; Melanoma; DNA damage; Apoptosis; Cycle arrest

Funding

  1. Technology Research Program of Chongqing Municipal Education Commission [KJZD-K201802701]

Ask authors/readers for more resources

In this study, it was found that HHT effectively inhibits the proliferation of melanoma cells by inducing DNA damage, apoptosis, and cell cycle arrest. Both in vitro and in vivo experiments confirmed the inhibitory effect of HHT on melanoma, providing evidence for its potential as an anti-melanoma agent.
Homoharringtonine (HHT), an approved anti-leukemic alkaloid, has been reported effectively in many types of tumor cells. However, its effect on melanoma cells has not been investigated. And the anti-melanoma mechanism of HHT is still unknown. In this study, we detected the effects of HHT on two melanoma cell lines (A375 and B16F10) and on the A375 xenograft mouse model. HHT significantly inhibited the proliferation of melanoma cells as investigated by the CCK8 method, cell cloning assay, and EdU experiment. HHT induced A375 and B16F10 cells DNA damage, apoptosis, and G2/M cell cycle arrest as proved by TdT-mediated dUTP Nick-End Labeling (TUNEL) and flow cytometry assay. Additionally, the loss of mitochondrial membrane potential in HHT-treated cells were visualized by JC-1 fluorescent staining. For the molecule mechanism study, western blotting results indicated the protein expression levels of ATM, P53, p-P53, p-CHK2, gamma-H2AX, PARP, cleaved-PARP, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Aurka, p-Aurka, Plk1, p-Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were regulated by HHT. And the relative mRNA expression level of Aurka, Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were ascertained by q-PCR assay. The results in vivo experiment showed that HHT can slow down the growth rate of tumors. At the same time, the protein expression levels in vivo were consistent with that in vitro. Collectively, our study provided evidence that HHT could be considered an effective anti-melanoma agent by inducing DNA damage, apoptosis, and cell cycle arrest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available